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One of the main components of pectin, a primary constituent 
of higher plant cell walls, is rhamnogalacturonan I. This polymer 
comprised of linked alternating rhamnose and galacturonic acid 
residues is decorated with side chains composed of arabinose and 
galactose residues. At present, the function of these side chains is 
not fully understood. Our research on Southern African resurrec-
tion plants, plants that are capable of surviving severe dehydration 
(desiccation), has revealed that their cell walls are capable of extreme 
flexibility in response to water loss. One species, Myrothamnus 
flabellifolia, has evolved a constitutively protected leaf cell wall, 
composed of an abundance of arabinose polymer side chains, 
suggested to be arabinans and/or arabinogalactans, associated with 
the pectin matrix. In this article, we propose a hypothetical model 
that explains how the arabinan rich pectin found in the leaves of 
this desiccation-tolerant plant permits almost complete water loss 
without deleterious consequences, such as irreversible polymer 
adhesion, from occurring. Recent evidence suggesting a role for 
pectin-associated arabinose polymers in relation to water depen-
dent processes in other plant species is also discussed.

The flowering plant cell wall is a composite structure consisting of 
a skeletal framework of cellulose and hemicellulose embedded within 
a matrix of pectin polysaccharides and cell wall glycoproteins.1,2 
The pectin matrix, in turn, is composed of three primary types of 
polysaccharides, these being rhamnogalacturonan I (RGI), rham‑
nogalacturonan II (RGII) and homogalacturonan (HG).1 RGII is a 
complex polysaccharide, consisting of many unusual sugar moieties, 
and is not present in large amounts in the wall.3 HG is effectively a 
linear homopolymer of galacturonic acid and is believed to facilitate 

the formation of tight junctions, ‘egg boxes’, by complexing with 
calcium ions present in the cell wall.1 RGI is a polymer composed 
of a backbone of alternating glycosidically linked rhamnose and 
galacturonic acid residues.1 Side chains, consisting of either arabino‑
galactan polymers or linear chains of arabinans and/or galactans, are 
then attached to the rhamnose residues of the RGI backbone.1 The 
manner with which these polymers are attached or become entangled 
with each other and cellulosic polymers to form the pectin matrix has 
been a matter of debate. The classical theory is that the RGI and HG 
polymers alternate with each other as block polymers and that the side 
chains interact with neighbouring polysaccharide chains. Recently, 
this standard theory has been questioned and an argument whereby 
the HG polymers are actually side chains of a RGI backbone polymer 
has been advanced.4 Nevertheless, the complexity of pectin polysac‑
charides is such that ascribing definitive functions to this matrix of 
polysaccharides has proven quite difficult. The physical properties 
of the pectin matrix suggest a number of possible functions. The 
water binding properties of the galacturonic acid residues indicate 
that polymers containing these groups have the capacity to hydrate 
and swell and so possibly help maintain polymer separation in the 
wall.5 The side chains of RGI include arabinan and galactan polymers 
which have been shown to be highly mobile6,7,8 with the potential 
to interact with each other forming a temporally entangled matrix.9 
It is also believed that arabinan chains, which have been shown to 
contain ferulate residues attached to terminal arabinose groups, are able 
to oxidatively cross‑link via the formation of diferulate bridges between 
arabinan chains that originate on separate RGI polysaccharides.10 
The pectin matrix is now believed to contain sub‑domains of RGI, 
HG and RGII which may interact with different polysaccharide 
components of the cell wall such as cellulose or xyloglucan.11,12 
Hence, it is possible that the pectin matrix may form these associa‑
tions with other polysaccharides via covalent9 and/or non‑covalent11 
(e.g., H‑bonding) interactions and in so doing ensure the integrity of 
the wall and its polymer organisation. Although a number of general 
functions, such as hydration and ion binding, have been proposed for 
the pectin matrix, in particular the RGI polymer and its neutral side 
chains, there has been difficulty in elucidating specific functions for 
these polysaccharides. A number of molecular genetic studies have 
been performed with the aim of establishing specific functions for 
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the RGI side chains. A recent study showed that genetic removal of 
the arabinan side chains in the cell walls of Nicotiana plumbaginfolia 
results in the formation of a non‑organogenic callus culture with 
loosely attached cells.13 Furthermore, it has been shown that ‘in 
muro’ fragmentation of the RG1 backbone in Solanum tuberosum 
results in abnormal development of the periderm.14 This suggests 
that these side chains may play at least some role in normal cell 
attachment and cell development. However, the real problem is that 
no obvious phenotypic differences between wild type and mutant 
plants (in which neutral side chains have been modified) have been 
observed.15,16,17 It may be that the conditions under which pheno‑
typic differences between wild type and mutant plants would arise 
have not yet been investigated. We believe the water binding and 
attachment properties of the pectin matrix are particularly important. 
This is especially so given the role pectin plays in the middle lamella 
ensuring attachment of cells to each other and in the formation of 
the apoplast where water mediated transport of solutes occurs.1 Our 
research has focused on a group of Southern African plants termed 
‘Resurrection plants’ because of their unique ability to survive severe 
dehydration (desiccation) to an almost air‑dry state.18 We have been 
interested in how the cell walls of angiosperm resurrection plants 
such as Craterostigma wilmsii19,20 and Myrothamnus flabellifolia21,22 
may have become adapted to survive this extreme water deficit stress 
(desiccation). We have shown that in the case of the Myrothamnus 
flabellifolia leaf cell wall, which becomes considerably folded when 
dried, does not undergo dramatic changes in composition or polymer 
location in response to desiccation.21 Rather we propose that this 
plant has evolved a constitutively protected cell wall which is able 
to undergo repeated cycles of desiccation and rehydration.21,22  
We have observed that the pectin component of the leaf cell wall 
in this species was unusually rich in arabinose polymers, most 
likely arabinan and arabinogalactan in nature, which we advanced 

was the reason that the cell wall of this 
species was able to tolerate desiccation.21 
Here we provide a simple model (Fig. 1) 
whereby the arabinan side chains of the 
pectin polysaccharides are responsible for 
possibly buffering/replacing the lost water 

during desiccation and in so doing prevent the formation of tight 
junctions (e.g., egg boxes) or strong H‑bonding interactions between 
the normally separate ‘skeletal’ polysaccharides (e.g., cellulose micro‑
fibrils and xyloglucan tethers) embedded in the pectin matrix. Our 
model is supported by the observation that cell wall arabinans play a 
crucial role in the response of guard cells to turgor pressure.23 It was 
shown that removal of arabinans by enzymatic digestion of leaf strips 
of Commelina communis resulted in locking of the guard cell walls 
in either the open or closed position.23 Additional roles for arabinan 
polymers in cell walls have recently been implied with respect to 
the salt tolerance of Mesembryanthemum crystallinum,24 ensuring 
hydration of the seed endosperm of Gleditsia triacanthos during germi‑
nation25 and the tolerance of tropical legume seeds to dehydration.26 
We believe that the arabinan side chains of RGI play a critical role 
in the ability of cell walls to remain flexible during plant growth and 
may have important functions in relation to the water content of the 
cell. Further studies aimed at determining the relationship between 
wall water content, RGI side chains and cell wall flexibility may reveal 
hitherto unsuspected functions for these polysaccharides in the life of 
the plant.
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